Exciting change is on the way! Please join us at nsf.gov for the latest news on NSF-funded research. While the NSF Science360 page and daily newsletter have now been retired, there’s much happening at nsf.gov. You’ll find current research news on the homepage and much more to explore throughout the site. Best of all, we’ve begun to build a brand-new website that will bring together news, social media, multimedia and more in a way that offers visitors a rich, rewarding, user-friendly experience.

Want to continue to receive email updates on the latest NSF research news and multimedia content? On September 23rd we’ll begin sending those updates via GovDelivery. If you’d prefer not to receive them, please unsubscribe now from Science360 News and your email address will not be moved into the new system.

Thanks so much for being part of the NSF Science360 News Service community. We hope you’ll stay with us during this transition so that we can continue to share the many ways NSF-funded research is advancing knowledge that transforms our future.

For additional information, please contact us at NewsTravels@nsf.gov

Picture of the Day

Previously unknown mechanism causes increased forest water use

Researchers have discovered a previously unknown mechanism that causes increased water use in forests, advancing our understanding of forest water cycles and highlighting threats to plants from water stress, as happens from acid rain. When fossil fuels are burned, sulfuric and nitric acid eventually fall back to earth in rain and snow, causing acidification of the soil. When that happens, a significant amount of calcium washes out of the soil, causing calcium deficiency and more water use in plants. Calcium plays a unique role in plant cells by regulating the minute pores, called stomata, in leaves or stems. Without enough calcium, plants can't close these pores, and their water use increases. The plants pump more water through transpiration, the process of water movement through a plant and its evaporation from leaves, to meet the calcium demand. Traditionally, forest water use was considered a function of meteorological factors, species composition and soil water availability. The impacts of soil biogeochemistry on large-scale forest water use had not been investigated.

Visit Website | Image credit: Lixin Wang