Exciting change is on the way! Please join us at nsf.gov for the latest news on NSF-funded research. While the NSF Science360 page and daily newsletter have now been retired, there’s much happening at nsf.gov. You’ll find current research news on the homepage and much more to explore throughout the site. Best of all, we’ve begun to build a brand-new website that will bring together news, social media, multimedia and more in a way that offers visitors a rich, rewarding, user-friendly experience.

Want to continue to receive email updates on the latest NSF research news and multimedia content? On September 23rd we’ll begin sending those updates via GovDelivery. If you’d prefer not to receive them, please unsubscribe now from Science360 News and your email address will not be moved into the new system.

Thanks so much for being part of the NSF Science360 News Service community. We hope you’ll stay with us during this transition so that we can continue to share the many ways NSF-funded research is advancing knowledge that transforms our future.

For additional information, please contact us at NewsTravels@nsf.gov

Picture of the Day

Ice shelves buckle under weight of meltwater lakes

For the first time, a research team co-led by National Science Foundation-funded scientists, has directly observed an Antarctic ice shelf bending under the weight of ponding meltwater on top, a phenomenon that may have triggered the 2002 collapse of the Larsen B ice shelf. And ice shelf flexure could potentially impact other vulnerable ice shelves, causing them to break up, quickening the discharge of ice into the ocean and contributing to global sea level rise. The team was inspired to look closer at the causes of ice shelf weakening after analyzing the catastrophic break up of the Larsen B ice shelf. That breakup made headlines in 2002 as 1,250 square miles of ice broke away into the ocean; the scientists noticed that in the months leading up to the breakup, the ice shelf was dotted with over 2000 meltwater lakes. Meltwater lakes can contain water weighing 50 thousand to 2 million tons each, and that pushes downward on the ice, creating an indent. If the lake drains, this indent pops back up. If the resultant stress is large enough, the ice surrounding the lake basin weakens, and may start to break, the researchers predict.

Visit Website | Image credit: Alison Banwell/University of Colorado, Boulder