Exciting change is on the way! Please join us at nsf.gov for the latest news on NSF-funded research. While the NSF Science360 page and daily newsletter have now been retired, there’s much happening at nsf.gov. You’ll find current research news on the homepage and much more to explore throughout the site. Best of all, we’ve begun to build a brand-new website that will bring together news, social media, multimedia and more in a way that offers visitors a rich, rewarding, user-friendly experience.

Want to continue to receive email updates on the latest NSF research news and multimedia content? On September 23rd we’ll begin sending those updates via GovDelivery. If you’d prefer not to receive them, please unsubscribe now from Science360 News and your email address will not be moved into the new system.

Thanks so much for being part of the NSF Science360 News Service community. We hope you’ll stay with us during this transition so that we can continue to share the many ways NSF-funded research is advancing knowledge that transforms our future.

For additional information, please contact us at NewsTravels@nsf.gov

Picture of the Day

New technique helps engineer water filters, human tissues

Scientists at Rutgers University have developed a technique to turn proteins into never-ending patterns that look like flowers, trees or snowflakes. The study describes a method that could have applications in water filters and human tissue engineering. In nature, building blocks such as protein molecules are assembled into larger structures for specific purposes. A classic example is collagen, which forms connective tissue in our bodies and is strong and flexible because of how it is organized. Tiny protein molecules assemble to form structures that are scaled up and can be as long as tendons. The scientists used protein engineering software to design proteins that bind to each other; they form fractal, tree-like shapes in response to a biological stimulus, such as that in a cell, tissue or organism. The researchers can also manipulate the dimensions of the shapes, so they resemble flowers, trees or snowflakes, which are visualized using special microscopy techniques. That could lead to new technologies such as filters for bioremediation, which uses biological molecules to remove herbicides from tainted water, or synthetic matrices to help study human disease or aid tissue engineering to restore, improve or preserve damaged tissues or organs.

Visit Website | Image credit: Nancy Hernandez/William Hansen/Slava Manichev