Exciting change is on the way! Please join us at nsf.gov for the latest news on NSF-funded research. While the NSF Science360 page and daily newsletter have now been retired, there’s much happening at nsf.gov. You’ll find current research news on the homepage and much more to explore throughout the site. Best of all, we’ve begun to build a brand-new website that will bring together news, social media, multimedia and more in a way that offers visitors a rich, rewarding, user-friendly experience.

Want to continue to receive email updates on the latest NSF research news and multimedia content? On September 23rd we’ll begin sending those updates via GovDelivery. If you’d prefer not to receive them, please unsubscribe now from Science360 News and your email address will not be moved into the new system.

Thanks so much for being part of the NSF Science360 News Service community. We hope you’ll stay with us during this transition so that we can continue to share the many ways NSF-funded research is advancing knowledge that transforms our future.

For additional information, please contact us at NewsTravels@nsf.gov

Picture of the Day

Anti-cancer drugs could save Tasmanian devils from extinction

Transmissible cancers are incredibly rare in nature, yet have arisen in Tasmanian devils on at least two separate occasions. New research identifies key anti-cancer drugs which could be trialed as a treatment for these diseases, which are threatening Tasmanian devils with extinction. The research also found that the two Tasmanian devil transmissible cancers are very similar to each other, and likely both arose due to susceptibilities inherent to the devils themselves. Tasmanian devils are marsupial carnivores endemic to the Australian island of Tasmania. The species is considered endangered due to devil facial tumor 1 (DFT1), a cancer that is passed between animals through the transfer of living cancer cells when the animals bite each other. DFT1 causes grotesque and disfiguring facial tumors, which usually kill affected individuals. Why Tasmanian devils should be particularly susceptible to the emergence of DFTs is not clear. However, devils bite each other frequently around the facial area, often causing significant tissue injury. Given the important role for RTK molecules in wound healing, the researchers speculate that DFT cancers may arise from errors in the maintenance of proliferative cells involved in tissue repair after injury.

Visit Website | Image credit: Mathias Appel