Exciting change is on the way! Please join us at nsf.gov for the latest news on NSF-funded research. While the NSF Science360 page and daily newsletter have now been retired, there’s much happening at nsf.gov. You’ll find current research news on the homepage and much more to explore throughout the site. Best of all, we’ve begun to build a brand-new website that will bring together news, social media, multimedia and more in a way that offers visitors a rich, rewarding, user-friendly experience.

Want to continue to receive email updates on the latest NSF research news and multimedia content? On September 23rd we’ll begin sending those updates via GovDelivery. If you’d prefer not to receive them, please unsubscribe now from Science360 News and your email address will not be moved into the new system.

Thanks so much for being part of the NSF Science360 News Service community. We hope you’ll stay with us during this transition so that we can continue to share the many ways NSF-funded research is advancing knowledge that transforms our future.

For additional information, please contact us at NewsTravels@nsf.gov

Picture of the Day

Instability in Antarctic ice projected to increase likelihood of worst-case sea level rise

Images of vanishing Arctic ice are jarring, but the region’s potential contributions to sea level rise are no match for Antarctica’s. Now, a study says that instability hidden in Antarctic ice increases the likelihood of worst-case scenarios for the continent’s contribution to global sea level. In the last six years, five closely observed Antarctic glaciers have doubled their rate of ice loss. At least one, Thwaites Glacier, modeled for the new study, will likely succumb to this instability, a volatile process that pushes ice into the ocean fast. How much ice the glacier will shed in the coming 50 to 800 years can’t be projected exactly, scientists say, due to unpredictable fluctuations in climate and the need for more data. But National Science Foundation-funded researchers have factored the instability into 500 ice flow simulations for Thwaites. The scenarios together point to the eventual triggering of the instability. Even if global warming were to stop, the instability would keep pushing ice out to sea at an accelerated rate over the coming centuries.

Visit Website | Image credit: Jeremy Harbeck