Exciting change is on the way! Please join us at nsf.gov for the latest news on NSF-funded research. While the NSF Science360 page and daily newsletter have now been retired, there’s much happening at nsf.gov. You’ll find current research news on the homepage and much more to explore throughout the site. Best of all, we’ve begun to build a brand-new website that will bring together news, social media, multimedia and more in a way that offers visitors a rich, rewarding, user-friendly experience.

Want to continue to receive email updates on the latest NSF research news and multimedia content? On September 23rd we’ll begin sending those updates via GovDelivery. If you’d prefer not to receive them, please unsubscribe now from Science360 News and your email address will not be moved into the new system.

Thanks so much for being part of the NSF Science360 News Service community. We hope you’ll stay with us during this transition so that we can continue to share the many ways NSF-funded research is advancing knowledge that transforms our future.

For additional information, please contact us at NewsTravels@nsf.gov

Picture of the Day

Climate change linked to bee decline

A new study has found that climate change may drive local extinction of mason bees in Arizona and other naturally warm climates. In a two-year field experiment that altered the temperature of the bees' nests to simulate a warmer, future climate, 35 percent of bees died in the first year and 70 percent died in the second year. This is compared to a 1 to 2 percent mortality rate in the control group. This species of mason bee (pictured) often called the "blueberry mason bee," is native to the western United States and northern Mexico. This particular type of solitary bee builds nests inside of holes and cracks in dead tree stumps. As a primary pollinator of manzanita shrubs in the wild, this little-studied bee may have a big effect on its ecosystem. To study how climate change affects mason bees, the research team set up three types of nesting environments in Arizona's Santa Catalina Mountains (above), where the bees thrive. The team manipulated the temperatures of the nests by painting them to simulate past, present and future climates. The team painted a third of the nests black to absorb more radiant heat, thus simulating a future climate predicted for the years 2040 to 2099. By painting another third with a white, reflective, cooling treatment, the team sent that third of the nests back in time to a climate similar to that of the 1950s. As a control, the team painted the final nests with a transparent paint, leaving their natural wood color. The experiment included 90 nests total, each housing anywhere from 2 to 15 bees.

Visit Website | Image credit: Paul CaraDonna/Northwestern University