Exciting change is on the way! Please join us at nsf.gov for the latest news on NSF-funded research. While the NSF Science360 page and daily newsletter have now been retired, there’s much happening at nsf.gov. You’ll find current research news on the homepage and much more to explore throughout the site. Best of all, we’ve begun to build a brand-new website that will bring together news, social media, multimedia and more in a way that offers visitors a rich, rewarding, user-friendly experience.

Want to continue to receive email updates on the latest NSF research news and multimedia content? On September 23rd we’ll begin sending those updates via GovDelivery. If you’d prefer not to receive them, please unsubscribe now from Science360 News and your email address will not be moved into the new system.

Thanks so much for being part of the NSF Science360 News Service community. We hope you’ll stay with us during this transition so that we can continue to share the many ways NSF-funded research is advancing knowledge that transforms our future.

For additional information, please contact us at NewsTravels@nsf.gov

Top Story

The learning brain is less flexible than we thought

Nobody really knows how the activity in your brain reorganizes as you learn new tasks, but new research reveals that the brain has various mechanisms and constraints by which it reorganizes its neural activity when learning over the course of a few hours. The new research finds that, when learning a new task, the brain is less flexible than previously thought. The research examined the changes that take place in the brain when learning a new task. To truly see how neural activity changes during learning, we need to look bigger -- at populations of neurons, rather than one neuron at a time, which has been the standard approach to date. The research team used a brain-computer interface, where subjects move a cursor on a computer screen by thought alone. As with learning to play a new sport, they found that subjects learned to control the cursor more accurately with practice. They then investigated how the activity in the brain changed during learning that enabled the improved performance. They found that, on a time scale of a few hours, the brain does not reconfigure its neural activity to maximize the speed and accuracy by which it moves the cursor.

Visit Website | Image credit: Pixabay.com