Exciting change is on the way! Please join us at nsf.gov for the latest news on NSF-funded research. While the NSF Science360 page and daily newsletter have now been retired, there’s much happening at nsf.gov. You’ll find current research news on the homepage and much more to explore throughout the site. Best of all, we’ve begun to build a brand-new website that will bring together news, social media, multimedia and more in a way that offers visitors a rich, rewarding, user-friendly experience.

Want to continue to receive email updates on the latest NSF research news and multimedia content? On September 23rd we’ll begin sending those updates via GovDelivery. If you’d prefer not to receive them, please unsubscribe now from Science360 News and your email address will not be moved into the new system.

Thanks so much for being part of the NSF Science360 News Service community. We hope you’ll stay with us during this transition so that we can continue to share the many ways NSF-funded research is advancing knowledge that transforms our future.

For additional information, please contact us at NewsTravels@nsf.gov

Top Story

Physics of laser frequency combs sheds light on nature's problem-solving skills

Nature has a way of finding optimal solutions to complex problems. For example, despite billions of ways for a single protein to fold, proteins always fold in a way that minimizes potential energy. Slime mold, a brainless organism, always finds the most efficient route to food, even when presented with an obstacle. A jump rope, when held on both ends, always winds up in the same shape, a curve known as catenary. That kind of optimization is explained by what's known as a variational principle: any other variation of the shape found by the protein, mold or jump rope would require more energy. Now NSF-funded researchers at Harvard University have found that some lasers use the same principle. Frequency combs are widely-used, high-precision tools for measuring and detecting different frequencies -- colors -- of light. Unlike conventional lasers, which emit a single frequency, these lasers emit multiple frequencies in lockstep, evenly spaced to resemble the teeth of a comb. When a laser produces a frequency comb, it emits light waves that repeat themselves periodically. Depending on the parameters of the comb, these waves can have a constant intensity while varying in color, or they can look like short pulses of light that build and drop in intensity. Researchers know how combs produce pulses, but how so-called frequency-modulated lasers maintain a constant intensity in the face of changing frequencies has been a long-lasting puzzle. The researchers reconstructed the waveform emitted by light sources known as quantum cascade lasers, widely used in spectroscopy and sensing. They found that the lasers choose to emit light waves that not only suppresses intensity fluctuations -- leading to a constant intensity in time -- but also maximizes power output.

Visit Website | Image credit: Capasso Lab/Harvard