Exciting change is on the way! Please join us at nsf.gov for the latest news on NSF-funded research. While the NSF Science360 page and daily newsletter have now been retired, there’s much happening at nsf.gov. You’ll find current research news on the homepage and much more to explore throughout the site. Best of all, we’ve begun to build a brand-new website that will bring together news, social media, multimedia and more in a way that offers visitors a rich, rewarding, user-friendly experience.

Want to continue to receive email updates on the latest NSF research news and multimedia content? On September 23rd we’ll begin sending those updates via GovDelivery. If you’d prefer not to receive them, please unsubscribe now from Science360 News and your email address will not be moved into the new system.

Thanks so much for being part of the NSF Science360 News Service community. We hope you’ll stay with us during this transition so that we can continue to share the many ways NSF-funded research is advancing knowledge that transforms our future.

For additional information, please contact us at NewsTravels@nsf.gov

Top Story

A new wrinkle to the limits of life on Earth

Glacial retreat in cold, high-altitude ecosystems exposes environments that are extremely sensitive to phosphorus input, new research shows. The finding upends previous ecological assumptions, helps scientists understand plant and microbe responses to climate change and could expand scientists' understanding of the limits to life on Earth. The study found that even in mountainous terrain above 17,000 feet above sea level, where soils freeze every night of the year, the addition of phosphorus resulted in rapid growth of plants and photosynthetic microbes, allowing them to overcome the chilly, arid climate. Nitrogen and phosphorus are both essential nutrients for vegetation and microbes, but plants are slower to re-grow in dry, high-elevation sites than in wet, temperate areas. Based on classical experiments, researchers had suspected that this sluggish regeneration was primarily due to the harsh climate and the relative lack of the nitrogen, limiting the potential for organic life. Researchers drew upon six years' worth of field data from arid sites in the central Alaska Range and the Andes Mountains of southern Peru.

Visit Website | Image credit: John Darcy/University of Colorado Boulder