Exciting change is on the way! Please join us at nsf.gov for the latest news on NSF-funded research. While the NSF Science360 page and daily newsletter have now been retired, there’s much happening at nsf.gov. You’ll find current research news on the homepage and much more to explore throughout the site. Best of all, we’ve begun to build a brand-new website that will bring together news, social media, multimedia and more in a way that offers visitors a rich, rewarding, user-friendly experience.

Want to continue to receive email updates on the latest NSF research news and multimedia content? On September 23rd we’ll begin sending those updates via GovDelivery. If you’d prefer not to receive them, please unsubscribe now from Science360 News and your email address will not be moved into the new system.

Thanks so much for being part of the NSF Science360 News Service community. We hope you’ll stay with us during this transition so that we can continue to share the many ways NSF-funded research is advancing knowledge that transforms our future.

For additional information, please contact us at NewsTravels@nsf.gov

Top Story

Neutrino observation points to one source of high-energy cosmic rays

Observations made by researchers using a National Science Foundation (NSF) detector at the South Pole and verified by ground- and space-based telescopes have produced the first evidence of one source of high-energy cosmic neutrinos. These ghostly subatomic particles can travel unhindered for billions of light-years, journeying to Earth from some of the most extreme environments in the universe. Data gathered by NSF's IceCube Neutrino Observatory at the foundation's Amundsen-Scott South Pole Station in Antarctica point to an answer to a more than century-old riddle about the origins of high-energy cosmic rays. That the detection was confirmed by other instruments, including an orbiting telescope operated by NASA, is a demonstration of the value of the emerging field of "multi-messenger astronomy," which describes the ability to marshal instruments globally to make and verify discoveries by combining data from messenger signals that reveal information about the universe. NSF's IceCube was built by NSF specifically to identify and track high-energy neutrinos. It sighted the first neutrinos from beyond our galaxy in 2013 and since has made numerous fundamental measurements in neutrino astronomy, which helps scientists make sense of matter in its most elementary forms.

Visit Website | Image credit: IceCube/NSF