Exciting change is on the way! Please join us at nsf.gov for the latest news on NSF-funded research. While the NSF Science360 page and daily newsletter have now been retired, there’s much happening at nsf.gov. You’ll find current research news on the homepage and much more to explore throughout the site. Best of all, we’ve begun to build a brand-new website that will bring together news, social media, multimedia and more in a way that offers visitors a rich, rewarding, user-friendly experience.

Want to continue to receive email updates on the latest NSF research news and multimedia content? On September 23rd we’ll begin sending those updates via GovDelivery. If you’d prefer not to receive them, please unsubscribe now from Science360 News and your email address will not be moved into the new system.

Thanks so much for being part of the NSF Science360 News Service community. We hope you’ll stay with us during this transition so that we can continue to share the many ways NSF-funded research is advancing knowledge that transforms our future.

For additional information, please contact us at NewsTravels@nsf.gov

Top Story

Algorithm tells robots where nearby humans are headed

In 2018, National Science Foundation-funded researchers and the auto manufacturer BMW were testing ways in which humans and robots might work in close proximity to assemble car parts. In a replica of a factory floor setting, the team rigged up a robot on rails, designed to deliver parts between work stations. Meanwhile, human workers crossed its path every so often to work at nearby stations. The robot was programmed to stop momentarily if a person passed by. But the researchers noticed that the robot would often freeze in place, overly cautious, long before a person had crossed its path. If this took place in a real manufacturing setting, such unnecessary pauses could accumulate into significant inefficiencies. The team traced the problem to a limitation in the robot's trajectory alignment algorithms used by the robot's motion predicting software. While they could reasonably predict where a person was headed, due to the poor time alignment the algorithms couldn't anticipate how long that person spent at any point along their predicted path -- and in this case, how long it would take for a person to stop, then double back and cross the robot's path again. Now, members of that same team have come up with a solution: an algorithm that accurately aligns partial trajectories in real time, allowing motion predictors to accurately anticipate the timing of a person's motion. When they applied the new algorithm to the BMW factory floor experiments, they found that, instead of freezing in place, the robot simply rolled on and was safely out of the way by the time the person walked by again.

Visit Website | Image credit: MIT