Exciting change is on the way! Please join us at nsf.gov for the latest news on NSF-funded research. While the NSF Science360 page and daily newsletter have now been retired, there’s much happening at nsf.gov. You’ll find current research news on the homepage and much more to explore throughout the site. Best of all, we’ve begun to build a brand-new website that will bring together news, social media, multimedia and more in a way that offers visitors a rich, rewarding, user-friendly experience.

Want to continue to receive email updates on the latest NSF research news and multimedia content? On September 23rd we’ll begin sending those updates via GovDelivery. If you’d prefer not to receive them, please unsubscribe now from Science360 News and your email address will not be moved into the new system.

Thanks so much for being part of the NSF Science360 News Service community. We hope you’ll stay with us during this transition so that we can continue to share the many ways NSF-funded research is advancing knowledge that transforms our future.

For additional information, please contact us at NewsTravels@nsf.gov

Top Story

New type of virus found in the ocean

A type of virus that dominates water samples taken from the world's oceans has long escaped analysis because it has characteristics that standard tests cannot detect. However, researchers have now managed to isolate and study representatives of these elusive viruses, which provide a key missing link in virus evolution and play an important role in regulating bacterial populations. Viruses are the main predators of bacteria, and the findings suggest that the current view of bacterial virus diversity has a major blind spot. The newly identified viruses lack the "tail" found on most catalogued and sequenced bacterial viruses, and have several other unusual properties that have led to their being missed by previous studies. To honor that fact, the researchers named this new group the Autolykiviridae -- after a character from Greek mythology who was storied for being difficult to catch. And, unlike typical viruses that prey on just one or two types of bacteria, these tailless varieties can infect dozens of different types, often of different species, underscoring their ecological relevance.

Visit Website | Image credit: MIT