Exciting change is on the way! Please join us at nsf.gov for the latest news on NSF-funded research. While the NSF Science360 page and daily newsletter have now been retired, there’s much happening at nsf.gov. You’ll find current research news on the homepage and much more to explore throughout the site. Best of all, we’ve begun to build a brand-new website that will bring together news, social media, multimedia and more in a way that offers visitors a rich, rewarding, user-friendly experience.

Want to continue to receive email updates on the latest NSF research news and multimedia content? On September 23rd we’ll begin sending those updates via GovDelivery. If you’d prefer not to receive them, please unsubscribe now from Science360 News and your email address will not be moved into the new system.

Thanks so much for being part of the NSF Science360 News Service community. We hope you’ll stay with us during this transition so that we can continue to share the many ways NSF-funded research is advancing knowledge that transforms our future.

For additional information, please contact us at NewsTravels@nsf.gov

Top Story

Synthetic organelle shows how tiny puddle-organs in our cells work

In a new study, National Science Foundation-funded researchers combined a couple of sugars, a dash of enzymes, a pinch of salt, and a splash of polyethylene glycol and carefully arranged them in watery baths to create a synthetic organelle, which they used to explore some odd cellular biochemistry. The researchers made the chemical medley in the lab to closely mimic membraneless organelles, mini-organs in cells that are not contained in a membrane but exist as pools of watery solutions. And their model demonstrated how, with just a few ingredients, the organelles could carry out fine-tuned biological processes. Organelles that are pools of watery solutions and not objects with membranes are a fairly recent discovery. A prime example is the nucleolus. It resides inside of the cell's nucleus, which is an organelle that does have a membrane. In the past, researchers thought the nucleolus disappeared during cell division and reappeared later. In the meantime, researchers have realized that the nucleolus has no membrane and that during cell division it gets diffused the way water bubbles do in vinaigrette dressing that has been shaken up.

Visit Website | Image credit: Georgia Tech