Exciting change is on the way! Please join us at nsf.gov for the latest news on NSF-funded research. While the NSF Science360 page and daily newsletter have now been retired, there’s much happening at nsf.gov. You’ll find current research news on the homepage and much more to explore throughout the site. Best of all, we’ve begun to build a brand-new website that will bring together news, social media, multimedia and more in a way that offers visitors a rich, rewarding, user-friendly experience.

Want to continue to receive email updates on the latest NSF research news and multimedia content? On September 23rd we’ll begin sending those updates via GovDelivery. If you’d prefer not to receive them, please unsubscribe now from Science360 News and your email address will not be moved into the new system.

Thanks so much for being part of the NSF Science360 News Service community. We hope you’ll stay with us during this transition so that we can continue to share the many ways NSF-funded research is advancing knowledge that transforms our future.

For additional information, please contact us at NewsTravels@nsf.gov

Top Story

Brain learns to categorize sounds the same way it does for images

Categorization, or the recognition that individual objects share similarities and can be grouped together, is fundamental to how we make sense of the world. Previous research has revealed how the brain categorizes images. Now, researchers funded by the National Science Foundation (NSF) have discovered that the brain categorizes sounds in much the same way. A research group at Georgetown University had previously studied how the brain categorizes visual objects and found that at least two distinct regions of the brain were involved. One region, in the visual cortex, encoded images, while a region in the prefrontal cortex signaled their category membership. For their more recent research, the research team was interested in whether the same processes underlie categorization of auditory cues. To find out how the brain categorizes auditory input, the researchers invented new sounds using an acoustic blending tool to produce sounds from two types of monkey calls. The blending produced hundreds of new sounds that differed from the original calls. According to the NSF program director on the research, "The work has potential implications for understanding individual differences in language learning and can provide a foundation for understanding and treating people with learning disorders and other disabilities."

Visit Website | Image credit: Xiong Jiang/Georgetown University