Exciting change is on the way! Please join us at nsf.gov for the latest news on NSF-funded research. While the NSF Science360 page and daily newsletter have now been retired, there’s much happening at nsf.gov. You’ll find current research news on the homepage and much more to explore throughout the site. Best of all, we’ve begun to build a brand-new website that will bring together news, social media, multimedia and more in a way that offers visitors a rich, rewarding, user-friendly experience.

Want to continue to receive email updates on the latest NSF research news and multimedia content? On September 23rd we’ll begin sending those updates via GovDelivery. If you’d prefer not to receive them, please unsubscribe now from Science360 News and your email address will not be moved into the new system.

Thanks so much for being part of the NSF Science360 News Service community. We hope you’ll stay with us during this transition so that we can continue to share the many ways NSF-funded research is advancing knowledge that transforms our future.

For additional information, please contact us at NewsTravels@nsf.gov

Top Story

Breaking bottlenecks to the electronic-photonic information technology revolution

Researchers have achieved an optical communications breakthrough that could revolutionize information technology. They created a tiny device, smaller than a human hair, that translates electrical bits (0s and 1s of the digital language) into light, or photonic, bits, at speeds tens of times faster than current technologies. These new electro-optic devices approach the size of current electronic circuit elements and are important for integrating photonics and electronics on a single chip. The new technology also involves utilization of a particle, a plasmon polariton, that has properties intermediate between electrons and photons. This hybrid particle technology is referred to as plasmonics. To increase the information-handling capacity of computing, telecommunications, sensing and control technologies, data needs to be communicated with high bandwidth over vast distances without signals (information) degrading, or consuming too much energy and generating too much heat. That's where the new technology fits in. Called an electro-optic modulator, the device converts electrical signals into optical ones capable at traveling either over fiberglass optic cabling or wirelessly through space via satellite and cell towers. This must be accomplished with excellent energy efficiency using extremely small devices capable of processing massive amounts of data.

Visit Website | Image credit: Nathaniel Kinsey/Virginia Commonwealth University