Exciting change is on the way! Please join us at nsf.gov for the latest news on NSF-funded research. While the NSF Science360 page and daily newsletter have now been retired, there’s much happening at nsf.gov. You’ll find current research news on the homepage and much more to explore throughout the site. Best of all, we’ve begun to build a brand-new website that will bring together news, social media, multimedia and more in a way that offers visitors a rich, rewarding, user-friendly experience.

Want to continue to receive email updates on the latest NSF research news and multimedia content? On September 23rd we’ll begin sending those updates via GovDelivery. If you’d prefer not to receive them, please unsubscribe now from Science360 News and your email address will not be moved into the new system.

Thanks so much for being part of the NSF Science360 News Service community. We hope you’ll stay with us during this transition so that we can continue to share the many ways NSF-funded research is advancing knowledge that transforms our future.

For additional information, please contact us at NewsTravels@nsf.gov

Top Story

Distant quasar providing clues to early universe conditions

Astronomers using the National Science Foundation's Very Long Baseline Array (VLBA) have made an image revealing tantalizing details of a quasar nearly 13 billion light-years from Earth -- an object that may provide important clues about the physical processes at work in the universe's first galaxies. The scientists studied a quasar called PSO J352.4034-15.3373 (P352-15), an unusually bright emitter of radio waves for an object so distant. The extremely sharp radio "vision" of the VLBA showed the object split into three major components, two of which show further subdivision. The components are spread over a distance of only about 5,000 light-years. Quasars are galaxies with supermassive black holes at their cores -- black holes millions or billions of times more massive than the sun. The powerful gravitational pull of such a black hole draws in nearby material, which forms a rotating disk around the massive object. The rapidly spinning disk spews jets of particles moving outward at speeds approaching that of light. These energetic "engines" are bright emitters of light and radio waves.

Visit Website | Image credit: Momjian, et al.; B. Saxton (NRAO/AUI/NSF)