Exciting change is on the way! Please join us at nsf.gov for the latest news on NSF-funded research. While the NSF Science360 page and daily newsletter have now been retired, there’s much happening at nsf.gov. You’ll find current research news on the homepage and much more to explore throughout the site. Best of all, we’ve begun to build a brand-new website that will bring together news, social media, multimedia and more in a way that offers visitors a rich, rewarding, user-friendly experience.

Want to continue to receive email updates on the latest NSF research news and multimedia content? On September 23rd we’ll begin sending those updates via GovDelivery. If you’d prefer not to receive them, please unsubscribe now from Science360 News and your email address will not be moved into the new system.

Thanks so much for being part of the NSF Science360 News Service community. We hope you’ll stay with us during this transition so that we can continue to share the many ways NSF-funded research is advancing knowledge that transforms our future.

For additional information, please contact us at NewsTravels@nsf.gov

Top Story

Wood formation model to fuel progress in bioenergy, paper, new applications

A new systems biology model that mimics the process of wood formation allows scientists to predict the effects of switching on and off 21 pathway genes involved in producing lignin, a primary component of wood. The model, built on more than three decades of research, will speed the process of engineering trees for specific needs in timber, biofuel, pulp, paper and green chemistry applications. Lignin, which forms in the plant cell wall, is an essential component for tree growth that imparts strength and density to timber. But lignin must be removed from wood during biofuel, paper and pulp production through costly treatments that require high heat and harsh chemicals. The new model could serve as a foundation for future work, and could expand to incorporate new components and processes.

Visit Website | Image credit: Jack Wang/Hao-Chuan Huang/North Carolina State University