Exciting change is on the way! Please join us at nsf.gov for the latest news on NSF-funded research. While the NSF Science360 page and daily newsletter have now been retired, there’s much happening at nsf.gov. You’ll find current research news on the homepage and much more to explore throughout the site. Best of all, we’ve begun to build a brand-new website that will bring together news, social media, multimedia and more in a way that offers visitors a rich, rewarding, user-friendly experience.

Want to continue to receive email updates on the latest NSF research news and multimedia content? On September 23rd we’ll begin sending those updates via GovDelivery. If you’d prefer not to receive them, please unsubscribe now from Science360 News and your email address will not be moved into the new system.

Thanks so much for being part of the NSF Science360 News Service community. We hope you’ll stay with us during this transition so that we can continue to share the many ways NSF-funded research is advancing knowledge that transforms our future.

For additional information, please contact us at NewsTravels@nsf.gov

Top Story

Physicists explain how large spherical viruses form

A virus, the simplest physical object in biology, consists of a protein shell called the capsid, which protects its nucleic acid genome -- RNA or DNA. The capsid can be cylindrical or conical in shape, but more commonly it assumes an icosahedral structure, like a soccer ball. Capsid formation is one of the most crucial steps in the process of viral infection. If the virus is small, the capsid forms spontaneously. Larger spherical viruses, however, such as the herpes simplex virus or infectious bursal disease virus, need the assistance of naturally produced "scaffolding proteins," which serve as a template guiding the capsid's formation. How these large viral shells assemble into highly symmetric structures is not well understood. This understanding may help researchers interrupt viruses' formation, containing the spread of viral diseases. Relying on a theory called the continuum elasticity theory, the researchers studied the growth of large spherical capsids. They showed that the template guides the formation of the capsid's protein subunits -- the individual building blocks of the shell -- in a way that is error-free and results, ultimately, in a highly symmetric, stable icosahedral structure.

Visit Website | Image credit: I. Pittalwala/University of California, Riverside