Exciting change is on the way! Please join us at nsf.gov for the latest news on NSF-funded research. While the NSF Science360 page and daily newsletter have now been retired, there’s much happening at nsf.gov. You’ll find current research news on the homepage and much more to explore throughout the site. Best of all, we’ve begun to build a brand-new website that will bring together news, social media, multimedia and more in a way that offers visitors a rich, rewarding, user-friendly experience.

Want to continue to receive email updates on the latest NSF research news and multimedia content? On September 23rd we’ll begin sending those updates via GovDelivery. If you’d prefer not to receive them, please unsubscribe now from Science360 News and your email address will not be moved into the new system.

Thanks so much for being part of the NSF Science360 News Service community. We hope you’ll stay with us during this transition so that we can continue to share the many ways NSF-funded research is advancing knowledge that transforms our future.

For additional information, please contact us at NewsTravels@nsf.gov

Top Story

Investigating improved wind forecasting to harness clean energy potential

Wind is a highly variable and intermittent source of energy, which means that integrating it into the power system can prove tricky. Therefore, when integrating wind energy into the power system, power companies will rely heavily on backups to manage against the sudden changes in wind energy. To deploy this juggling act efficiently requires accurate forecasts of when the wind levels will rise and fall. But, at present, current wind forecasts are highly inaccurate. New research from the Nevada Solar-Energy-Water-Environment Nexus Project aims to use a combination of Big Data analytics and statistical models to provide more accurate, and therefore valuable, estimates of wind power. Initially, researchers needed to teach the model what has happened historically. To do this, they "trained" the model on a massive data set from a large wind farm. Sensors on this wind farm recorded the wind speed and direction, and instruments also recorded the output of each of the 300 wind turbines every 10 minutes. This model uses the forecast of the wind at projected future intervals and the probability of this value occurring to determine how best to maximize the productivity of the system. Simulations using this model have been shown to improve the efficiency of the system.

Visit Website | Image credit: Cary Leppert/Shutterstock.com