Exciting change is on the way! Please join us at nsf.gov for the latest news on NSF-funded research. While the NSF Science360 page and daily newsletter have now been retired, there’s much happening at nsf.gov. You’ll find current research news on the homepage and much more to explore throughout the site. Best of all, we’ve begun to build a brand-new website that will bring together news, social media, multimedia and more in a way that offers visitors a rich, rewarding, user-friendly experience.

Want to continue to receive email updates on the latest NSF research news and multimedia content? On September 23rd we’ll begin sending those updates via GovDelivery. If you’d prefer not to receive them, please unsubscribe now from Science360 News and your email address will not be moved into the new system.

Thanks so much for being part of the NSF Science360 News Service community. We hope you’ll stay with us during this transition so that we can continue to share the many ways NSF-funded research is advancing knowledge that transforms our future.

For additional information, please contact us at NewsTravels@nsf.gov

Top Story

Sea sponges stay put with anchors that bend but don’t break

Sea sponges known as Venus’ flower baskets remain fixed to the seafloor with nothing more than an array of thin, hair-like anchors made essentially of glass. It’s an important job, and new research suggests that it’s the internal architecture of those anchors, known as basalia spicules, that helps them do it. The spicules, each about half the diameter of a human hair, are made of a central silica (glass) core clad within 25 thin silica cylinders. Viewed in cross-section, the arrangement looks like the rings in a tree trunk. The new study shows that compared to spicules taken from a different sponge species that lacks the tree-ring architecture, the basalia spicules are able to bend up to 2.4 times farther before breaking.

Visit Website | Image credit: Michael A. Monn, Brown University