Exciting change is on the way! Please join us at nsf.gov for the latest news on NSF-funded research. While the NSF Science360 page and daily newsletter have now been retired, there’s much happening at nsf.gov. You’ll find current research news on the homepage and much more to explore throughout the site. Best of all, we’ve begun to build a brand-new website that will bring together news, social media, multimedia and more in a way that offers visitors a rich, rewarding, user-friendly experience.

Want to continue to receive email updates on the latest NSF research news and multimedia content? On September 23rd we’ll begin sending those updates via GovDelivery. If you’d prefer not to receive them, please unsubscribe now from Science360 News and your email address will not be moved into the new system.

Thanks so much for being part of the NSF Science360 News Service community. We hope you’ll stay with us during this transition so that we can continue to share the many ways NSF-funded research is advancing knowledge that transforms our future.

For additional information, please contact us at NewsTravels@nsf.gov

Top Story

Researchers develop semi-liquid metal anode for next-generation batteries

National Science Foundation-funded researchers have developed a semiliquid lithium metal-based anode that represents a new paradigm in battery design. Lithium batteries made using this new electrode type could have a higher capacity and be much safer than typical lithium metal-based batteries that use lithium foil as anode. Lithium-based batteries are one of the most common types of rechargeable battery used in modern electronics due to their ability to store high amounts of energy. Traditionally, these batteries are made of combustible liquid electrolytes and two electrodes, an anode and a cathode, which are separated by a membrane. After a battery has been charged and discharged repeatedly, strands of lithium called dendrites can grow on the surface of the electrode. The dendrites can pierce through the membrane that separates the two electrodes. This allows contact between the anode and cathode, which can cause the battery to short circuit and, in the worst case, catch fire. The researchers created a dual-conductive polymer/carbon composite matrix that has lithium microparticles evenly distributed throughout. The matrix remains flowable at room temperatures, which allows it to create a sufficient level of contact with the solid electrolyte. By combining the semiliquid metal anode with a garnet-based solid ceramic electrolyte, they were able to cycle the cell at 10 times higher current density than cells with a solid electrolyte and a traditional lithium foil anode. This cell also had a much longer cycle-life than traditional cells.

Visit Website | Image credit: Carnegie Mellon University