Top Story

Sound waves could provide 'liquid biopsies'

Using sound waves, researchers have developed a gentle, contact-free method for separating circulating tumor cells from blood samples that is fast and efficient enough for clinical use. Circulating tumor cells (CTCs) are small pieces of a tumor that break away and flow through the bloodstream. They contain a wealth of information about the tumor, such as its type, physical characteristics and genetic mutations that are associated with prognosis and whether certain treatments may be effective. The ability to quickly and efficiently harvest and grow these cells from a blood sample would enable "liquid biopsies" capable of providing robust diagnosis, prognosis and suggestions for treatment strategies based on individual CTC profiling. CTCs are, however, extremely rare and difficult to catch. There are typically only a handful for every few billion blood cells running through a patient's veins. And while there are many technologies designed to separate them from normal blood cells, none of them are perfect. They tend to damage or kill the CTCs in the process, lack efficiency, only work on specific types of cancer, or take far too long to be used in many situations. In a new study, National Science Foundation-funded researchers from demonstrate a platform based on sound waves capable of separating CTCs from a 7.5-mL vial of blood with at least 86 percent efficiency in less than an hour. With additional improvements, the researchers hope the technology will form the basis of a new test through an inexpensive, disposable chip.

Visit Website | Image credit: Duke University