Exciting change is on the way! Please join us at nsf.gov for the latest news on NSF-funded research. While the NSF Science360 page and daily newsletter have now been retired, there’s much happening at nsf.gov. You’ll find current research news on the homepage and much more to explore throughout the site. Best of all, we’ve begun to build a brand-new website that will bring together news, social media, multimedia and more in a way that offers visitors a rich, rewarding, user-friendly experience.

Want to continue to receive email updates on the latest NSF research news and multimedia content? On September 23rd we’ll begin sending those updates via GovDelivery. If you’d prefer not to receive them, please unsubscribe now from Science360 News and your email address will not be moved into the new system.

Thanks so much for being part of the NSF Science360 News Service community. We hope you’ll stay with us during this transition so that we can continue to share the many ways NSF-funded research is advancing knowledge that transforms our future.

For additional information, please contact us at NewsTravels@nsf.gov

Top Story

System for performing 'tensor algebra' offers 100-fold speedups

We live in the age of Big Data, but most of that data is "sparse." With sparse data, analytic algorithms end up doing a lot of addition and multiplication by zero, which is wasted computation. Programmers get around this by writing custom code to avoid zero entries, but that code is complex, and it generally applies only to a narrow range of problems. Researchers have developed a new system that automatically produces code optimized for sparse data. That code offers a 100-fold speedup over existing, non-optimized software packages. Also, its performance is comparable to that of meticulously hand-optimized code for specific sparse-data operations while requiring far less work on the programmer's part. The system is called Taco, for tensor algebra compiler. In recent years, the mathematical manipulation of tensors -- tensor algebra -- has become crucial to big-data analysis and machine learning. It has been a staple of scientific research since Einstein's time.

Visit Website | Image credit: Christine Daniloff/Massachusetts Institute of Technology