Exciting change is on the way! Please join us at nsf.gov for the latest news on NSF-funded research. While the NSF Science360 page and daily newsletter have now been retired, there’s much happening at nsf.gov. You’ll find current research news on the homepage and much more to explore throughout the site. Best of all, we’ve begun to build a brand-new website that will bring together news, social media, multimedia and more in a way that offers visitors a rich, rewarding, user-friendly experience.

Want to continue to receive email updates on the latest NSF research news and multimedia content? On September 23rd we’ll begin sending those updates via GovDelivery. If you’d prefer not to receive them, please unsubscribe now from Science360 News and your email address will not be moved into the new system.

Thanks so much for being part of the NSF Science360 News Service community. We hope you’ll stay with us during this transition so that we can continue to share the many ways NSF-funded research is advancing knowledge that transforms our future.

For additional information, please contact us at NewsTravels@nsf.gov

Top Story

Superconductor's magnetic persona unmasked

In the pantheon of unconventional superconductors, iron selenide is a rock star. But new experiments by U.S., Chinese and European physicists have found the material's magnetic persona to be unexpectedly mundane. The lead investigator of a new National Science Foundation-funded study offered this bottom-line assessment of iron selenide: "It's a garden-variety iron-based superconductor. The fundamental physics of superconductivity are similar to what we find in all the other iron-based superconductors." That conclusion is based on data from neutron scattering experiments performed over the past year in the U.S., Germany and the United Kingdom. The experiments produced the first measurements of the dynamic magnetic properties of iron selenide crystals that had undergone a characteristic structural shift that occurs as the material is cooled but before it is cooled to the point of superconductivity.

Visit Website | Image credit: Jeff Fitlow/Rice University