Exciting change is on the way! Please join us at nsf.gov for the latest news on NSF-funded research. While the NSF Science360 page and daily newsletter have now been retired, there’s much happening at nsf.gov. You’ll find current research news on the homepage and much more to explore throughout the site. Best of all, we’ve begun to build a brand-new website that will bring together news, social media, multimedia and more in a way that offers visitors a rich, rewarding, user-friendly experience.

Want to continue to receive email updates on the latest NSF research news and multimedia content? On September 23rd we’ll begin sending those updates via GovDelivery. If you’d prefer not to receive them, please unsubscribe now from Science360 News and your email address will not be moved into the new system.

Thanks so much for being part of the NSF Science360 News Service community. We hope you’ll stay with us during this transition so that we can continue to share the many ways NSF-funded research is advancing knowledge that transforms our future.

For additional information, please contact us at NewsTravels@nsf.gov

Top Story

Scientists regenerate retinal cells in mice

Scientists have successfully regenerated cells in the retina of adult mice. Their results raise the hope that someday it may be possible to repair retinas damaged by trauma, glaucoma and other eye diseases. Many tissues of our bodies, such as our skin, can heal because they contain stem cells that can divide and differentiate into the type of cells needed to repair damaged tissue. The cells of our retinas, however, lack this ability to regenerate. As a consequence, injury to the retina often leads to permanent vision loss. This is not the case, however, in zebrafish, whose retinas contain cells called Müller glia that harbor a gene that allows them to regenerate. The scientists conducting this study wanted to see whether it was possible to use this gene to re-program Müller glia in adult mice. The researchers hoped to prompt a regeneration that doesn't happen naturally in mammalian retinas.

Visit Website | Image credit: Tom Reh Laboratory