Exciting change is on the way! Please join us at nsf.gov for the latest news on NSF-funded research. While the NSF Science360 page and daily newsletter have now been retired, there’s much happening at nsf.gov. You’ll find current research news on the homepage and much more to explore throughout the site. Best of all, we’ve begun to build a brand-new website that will bring together news, social media, multimedia and more in a way that offers visitors a rich, rewarding, user-friendly experience.

Want to continue to receive email updates on the latest NSF research news and multimedia content? On September 23rd we’ll begin sending those updates via GovDelivery. If you’d prefer not to receive them, please unsubscribe now from Science360 News and your email address will not be moved into the new system.

Thanks so much for being part of the NSF Science360 News Service community. We hope you’ll stay with us during this transition so that we can continue to share the many ways NSF-funded research is advancing knowledge that transforms our future.

For additional information, please contact us at NewsTravels@nsf.gov

Top Story

Shape-shifting sheets

National Science Foundation-funded engineers have developed a mathematical framework that can turn any sheet of material into any prescribed shape, inspired by the paper craft kirigami (from the Japanese, kiri, meaning to cut and kami, meaning paper). Unlike its better-known cousin origami, which uses folds to shape paper, kirigami relies on a pattern of cuts in a flat paper sheet to change its flexibility and allow it to morph into 3D shapes. Artists have long used this artform to create everything from pop-up cards to castles and dragons. This research follows previous work by the researchers that characterized how origami-based patterns could be used as building blocks to create almost any three-dimensional curved shape. Next the researchers aim to explore how to combine cuts and folds to achieve any shape with a given set of properties, thus linking origami and kirigami.

Visit Website | Image credit: Harvard SEAS